
Analizo: an Extensible Multi-Language Source Code Analysis
and Visualization Toolkit

Antonio Terceiro1, Joenio Costa2, João Miranda3, Paulo Meirelles3,
Luiz Romário Rios1, Lucianna Almeida3, Christina Chavez1, Fabio Kon3

1 Universidade Federal da Bahia (UFBA)

{terceiro,luizromario,flach}@dcc.ufba.br

2Universidade Católica do Salvador (UCSAL)

joenio@perl.org.br

3Universidade de São Paulo (USP)

{joaomm,paulormm,lucianna,fabio.kon}@ime.usp.br

Abstract. This paper describes Analizo, a free, multi-language, extensible source
code analysis and visualization toolkit. It supports the extraction and calcula-
tion of a fair number of source code metrics, generation of dependency graphs,
and software evolution analysis.

1. Introduction

Software engineers need to analyze and visualize the software they create or maintain in
order to better understand it. Software Engineering researchers need to analyze software
products in order to draw conclusions in their research activities. However analyzing and
visualizing large individual software products or a large number of individual software
products is only cost-effective with the assistance of automated tools.

Our research group have been working with empirical studiesthat require large-
scale source code analysis, and consequently we resort to source code analysis tools in
order to support some of our tasks. We have defined the following requirements for the
tool support we needed:

• Multi-language. The tool should support the analysis of different programming
languages (in particular, at least C, C++ and Java), since this can enhance the
validity of our studies.

• Free software. The tool should be free software1, available without restrictions, in
order to promote the replicability of our studies by other researchers.

• Extensibility. The tool should provide clear interfaces for adding new types of
analyzes, metrics, or output formats, in order to promote the continuous support
to our studies as the research progresses.

In this paper, we present Analizo, a toolkit for source code analysis and visualiza-
tion, developed with the goal of fulfilling these requirements. Section 2 describes related
work. Section 3 describes Analizo architecture. Section 4 presents Analizo features. Sec-
tion 5 presents Analizo use cases. Finally, Section 6 concludes the paper and discusses
future work.

1In our work, we consider the terms “free software” and “open source software” equivalent.



2. Related work

While evaluating the existing tools to use in our research, we analyzed the following
ones: CCCC [Littlefair 2010], Cscope [Steffen et al. 2009],LDX [Hassan et al. 2005],
CTAGX [Hassan et al. 2005], and CPPX [Hassan et al. 2005]. Besides the research re-
quirements described, we have included two practical requirements:

• The tool must be actively maintained. This involves having active developers who
know the tool architecture and can provide updates and defect corrections.

• The tool must handle source code that cannot be compiled anymore. For example,
the code may have syntax errors, the libraries it referencesmay be not available
anymore, or the used libraries changed API. This is important in order to be able
to analyze legacy source code in software evolution studies.

The requirements evaluation for the tools are presented in Table 1. Since we only
looked at tools that were free software, the table does not have a line for that requirement.

Requirement CCCC Cscope LDX CTAGX CPPX
Language support C++, Java C C, C++ C C, C++
Extensibility No No No No No
Maintained Yes Yes No No No
Handles non-compiling code Yes No No No No

Table 1. Found tools versus posed requirements

As it can be seen in Table 1, none of the existing tools we foundfulfills all of our
requirements. In special, none of the tools were able to analyze source code in all three
needed languages, and none of them had documented extensioninterfaces that could be
used to develop new analysis types or output formats.

3. Architecture

Analizo architecture is presented in Figure 1, using a Layered style [Clements et al. 2002].
Each layer in the diagram uses only the services provided by the layers directly below it.

Core

Extractor Metrics

Tools

Output

Figure 1. Analizo architecture, using the Layered Style [Clements et al. 2002]

TheCore layer contains the data structures used to store information concerning
the source code being analyzed, such as the list of existing modules2, elements inside
each module (attributes/variables, or methods/functions), dependency information (call,

2we used the “module” concept as a general term for the different types of structures used in software
development, as classes and C source files



inheritance, etc). This layer implements most of Analizo business logic, and it does not
depend on any other layer.

The Extractors layer comprises the different source code information extraction
strategies built in Analizo. Extractors get information from source code and store them in
theCore layer data structures. It requires only the creation of a newsubclass to add a new
type of extractor that interfaces with another external tool or provides its own analysis
directly. Currently, there are two extractors. Both are interfaces for external source code
parsing tools:

• Analizo::Extractors::Doxyparse is an interface for Doxyparse, a source code parser
for C, C++ and Java developed by our group [Costa 2009]. Doxyparse is based
on Doxygen3, a multi-language source code documentation system that contains
a robust parser.

• Analizo::Extractors::Sloccount is an interface for David A. Wheeler’s Sloccount4,
a tool that calculates the number of effective lines of code.

The other intermediate layers areMetrics andOutput. TheMetrics layer processes
Core data structures in order to calculate metrics. At the moment, Analizo supports a
fair set of metrics (listed in Section 4). TheOutput layer is responsible for handling
different file formats. Currently, the only output format implemented is the DOT format
for dependency graphs, but adding new formats is simply a matter of adding new output
handler classes.

TheTools layer comprises a set of command-line tools that constituteAnalizo in-
terface for both users and higher-level applications. These tools use services provided by
the other layers: they instantiate the core data structures, one or more extractors, option-
ally the metrics processors, an output format module, and orchestrate them in order to
provide the desired result. Most of the features described in Section 4 are implemented as
Analizo tools.

Those tools are designed to adhere to the UNIX philosophy: they accomplish
specialized tasks and generate output that is suitable to befed as input to other tools, either
from Analizo itself or other external tools. Some of the tools are implemented on top
of others instead of explicitly manipulating Analizo internals, and some are designed to
provide output for external applications such as graph drawing programs or data analysis
and visualization applications.

4. Features

4.1. Multi-language source code analysis

Currently, Analizo supports source analysis of code written in C, C++ and Java. However,
it can be extended to support other languages since it uses Doxyparse, which is based on
Doxygen and thus also supports several different languages.

4.2. Metrics

Analizo reports both project-level metrics, which are calculated for the entire project,
and module-level metrics, which are calculated individually for each module. On the

3doxygen.org/
4dwheeler.com/sloccount/



project-level, Analizo also provides basic descriptive statistics for each of the module-
level metrics: sum, mean, median, mode, standard deviation, variance, skewness and
kurtosis of the distribution, minimum, and maximum value. The following metrics are
supported at the time of writing5:

• Project-level metrics: Total Coupling Factor, Total Linesof Code, Total number
of methods per abstract class, Total Number of Modules/Classes, Total number
of modules/classes with at least one defined attributes, Total number of mod-
ules/classes with at least one defined method, Total Number of Methods.

• Module-level metrics: Afferent Connections per Class, Average Cyclomatic Com-
plexity per Method, Average Method LOC, Average Number of Parameters per
Method, Coupling Between Objects, Depth of Inheritance Tree, Lack of Cohesion
of Methods, Lines of Code, Max Method LOC, Number of Attributes, Number of
Children, Number of Methods, Number of Public Attributes, Number of Public
Methods, Response For a Class.

4.3. Metrics batch processing

In most quantitative studies on Software Engineering involving the acquisition of source
code metrics on a large number of projects, processing each project individually is im-
practical, error-prone and difficult to repeat. Analizo canprocess multiple projects in
batch and produce one comma-separated values (CSV) metricsdata file for each project,
as well as a summary CSV data file with project-level metrics for all projects. These data
files can be easily imported in statistical tools or in spreadsheet software for further anal-
ysis. This can also be used to analyze several releases of thesame project, in software
evolution studies.

4.4. Metrics history

Sometimes researchers need to process the history of software projects on a more fine-
grained scale. Analizo can process a version control repository and provide a CSV data
file with the metrics values for each revision in which sourcecode was changed in the
project. Git and Subversion repositories are supported directly, and CVS repositories
must be converted into Git ones beforehand.

4.5. Dependency Graph output

Analizo can output module dependency information extracted from a source code tree
in a format suitable for processing with the Graphviz6 graph drawing tools. Figure 2(a)
presents a sample dependency graph obtained by feeding Graphviz’ dot tool with Analizo
graph output.

4.6. Evolution matrix

Another useful Analizo feature is generating evolution matrices [Lanza 2001]. After pro-
cessing each release of the project (see Section 4.3), the user can request the creation of an
evolution matrix from the individual data files. Figure 2(b)shows an excerpt of a sample
evolution matrix produced by Analizo.

5References to literature on each metric were omitted because of space constraints.
6graphviz.org/



main_window.c

navigator.c

47

ewer.c

25 thumbnail_bar.c

5

28

1

6

2

thumbnail.c

11

4

2

(a) Sample module dependency graph (b) Sample evolution matrix

Figure 2. Examples of Analizo features.

5. Usage in research work

Analizo has been extensively used by our group to support research projects:

• [Amaral 2009] used Analizo module dependency graph output to produce an evo-
lution matrix for a case study on the evolution of the VLC project. Later on, an
evolution matrix tool was incorporated in Analizo itself.

• [Costa 2009] did a comparison between different strategiesfor extracting module
dependency information from source code, leading to the development of Doxy-
parse – the Analizo Doxygen-based extractor.

• [Terceiro and Chavez 2009] used the metrics output on an exploratory study on
the evolution of structural complexity in a free software project written in C.

• [Morais et al. 2009] used the Analizo metrics tool as a backend for Kalibro7, a
software metrics evaluation tool. Later on, Kalibro Web Service8 was developed,
providing an integration with Spago4Q9 – a free platform to measure, analyze and
monitor quality of products, processes and services.

• [Terceiro et al. 2010] used the metrics history processing feature to analyze the
complete history of changes in 7 web server projects of varying sizes.

• [Meirelles et al. 2010] used Analizo metrics batch feature to process the source
code of more than 6000 free software projects from the Sourceforge.net repository.

Most of the work cited above contributed to improvements in Analizo, making it
even more appropriate for research involving source code analysis.

6. Final remarks

This paper presented Analizo, a toolkit for source code analysis and visualization that
currently supports C, C++ and Java. Analizo has useful features for both researchers
working with source code analysis and professionals who want to analyze their source
code in order to identify potential problems or possible enhancements.

7softwarelivre.org/mezuro/kalibro/
8ccsl.ime.usp.br/kalibro-service
9spago4q.org



Future work includes the development of a web-based platform for source code
analysis and visualization based on Analizo. This project is current under development.

Analizo is free software, licensed under the GNU General Public License ver-
sion 3. Its source code, as well as pre-made binary packages,manuals and tutorials
can be obtained fromsoftwarelivre.org/mezuro/analizo. All tools are self-
documented and provide an accompanying UNIX manual page. Analizo is mostly written
in Perl, with some of its tools written in Ruby and Shell Script.

This work is supported by CNPQ, FAPESB, the National Institute of Science and
Technology for Software Engineering (INES), Qualipso project, and USP FLOSS Com-
petence Center (CCSL-USP).

References

Amaral, V. (2009). Análise de evolucao de projetos de software livre através de matrizes de
evolucao. Undergraduation course conclusion project, Universidade Federal da Bahia.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,Little, R., Nord, R., and Stafford, J.
(2002).Documenting Software Architecture : Views and Beyond. The SEI series in software
engineering. Addison-Wesley, Boston.

Costa, J. (2009). Extração de informações de dependência entre módulos de programas c/c++.
Undergraduation course conclusion project, UniversidadeCatólica do Salvador.

Hassan, A. E., Jiang, Z. M., and Holt, R. C. (2005). Source versus object code extraction
for recovering software architecture. InProceedings of the 12th Working Conference on
Reverse Engineering (WCRE’05).

Lanza, M. (2001). The evolution matrix: recovering software evolution using software vi-
sualization techniques. InIWPSE ’01: Proceedings of the 4th International Workshop on
Principles of Software Evolution, pages 37–42, New York, NY, USA. ACM.

Littlefair, T. (2010). CCCC - C and C++ Code Counter. Available at http://cccc.
sourceforge.net/. Last access on June 3rd, 2010.

Meirelles, P., Jr., C. S., Miranda, J., Kon, F., Terceiro, A., and Chavez, C. (2010). A Study
of the Relationship between Source Code Metrics and Attractiveness in Free Software
Projects.Submitted.

Morais, C., Meirelles, P., and Kon, F. (2009). Kalibro: Uma ferramenta de configuração
e interpretação de métricas de código-fonte. Undergraduation course conclusion project,
Universidade de São Paulo.

Steffen, J., Hans-Bernhard, and Horman, B. N. (2009).Cscope. http://cscope.sourceforge.net/.

Terceiro, A. and Chavez, C. (2009). Structural Complexity Evolution in Free Software
Projects: A Case Study. In Ali Babar, M., Lundell, B., and vander Linden, F., editors,
QACOS-OSSPL 2009: Proceedings of the Joint Workshop on Quality and Architectural
Concerns in Open Source Software (QACOS) and Open Source Software and Product Lines
(OSSPL).

Terceiro, A., Rios, L. R., and Chavez, C. (2010). An Empirical Study on the Structural Com-
plexity introduced by Core and Peripheral Developers in Free Software projects.Submitted.


