Analizo: an Extensible Multi-Language Source Code Analys
and Visualization Toolkit

Antonio Terceiro!, Joenio Costa, Jodo Miranda?, Paulo Meirelleg,
Luiz Romario Rios!, Lucianna Almeida3, Christina Chavez', Fabio Kon?

! Universidade Federal da Bahia (UFBA)
{terceiro, |l uizronmario, flach}@Icc. ufba. br
2Universidade Catolica do Salvador (UCSAL)
j oeni o@erl . org. br
SUniversidade de Sao Paulo (USP)

{j oaomm paul or mm | uci anna, f abi 0. kon}@ ne. usp. br

Abstract. Thispaper describes Analizo, a free, multi-language, extensible source
code analysis and visualization toolkit. It supports the extraction and calcula-
tion of a fair number of source code metrics, generation of dependency graphs,
and software evolution analysis.

1. Introduction

Software engineers need to analyze and visualize the seftivay create or maintain in
order to better understand it. Software Engineering rebeas need to analyze software
products in order to draw conclusions in their researclvisiets. However analyzing and
visualizing large individual software products or a largenier of individual software
products is only cost-effective with the assistance of ienatied tools.

Our research group have been working with empirical stuidiasrequire large-
scale source code analysis, and consequently we resortitoescode analysis tools in
order to support some of our tasks. We have defined the fallpwequirements for the
tool support we needed:

e Multi-language. The tool should support the analysis ofedént programming
languages (in particular, at least C, C++ and Java), sinsecin enhance the
validity of our studies.

¢ Free software. The tool should be free softwaawailable without restrictions, in
order to promote the replicability of our studies by othexe@chers.

e Extensibility. The tool should provide clear interfaces &lding new types of
analyzes, metrics, or output formats, in order to promogectbntinuous support
to our studies as the research progresses.

In this paper, we present Analizo, a toolkit for source caatysis and visualiza-
tion, developed with the goal of fulfilling these requirertserSection 2 describes related
work. Section 3 describes Analizo architecture. Sectiore4gnts Analizo features. Sec-
tion 5 presents Analizo use cases. Finally, Section 6 coeslihe paper and discusses
future work.

In our work, we consider the terms “free software” and “opeurse software” equivalent.

2. Related work

While evaluating the existing tools to use in our research,analyzed the following
ones: CCCC [Littlefair 2010], Cscope [Steffen et al. 20Q9pX [Hassan et al. 2005],
CTAGX [Hassan et al. 2005], and CPPX [Hassan et al. 2005].idBeshe research re-
quirements described, we have included two practical rements:

e The tool must be actively maintained. This involves haviotva developers who
know the tool architecture and can provide updates and dedeections.

e The tool must handle source code that cannot be compiled@myrfor example,
the code may have syntax errors, the libraries it referenw@sbe not available
anymore, or the used libraries changed API. This is imporitaarder to be able
to analyze legacy source code in software evolution studies

The requirements evaluation for the tools are presentedhieTl. Since we only
looked at tools that were free software, the table does n& &dine for that requirement.

| Requirement | CCCC | Cscope| LDX | CTAGX | CPPX |
Language support C++, Java C C, C++ C C, C++
Extensibility No No No No No
Maintained Yes Yes No No No
Handles non-compiling code Yes No No No No

Table 1. Found tools versus posed requirements

As it can be seen in Table 1, none of the existing tools we fdulidls all of our
requirements. In special, none of the tools were able toyaaaource code in all three
needed languages, and none of them had documented extertsidaces that could be
used to develop new analysis types or output formats.

3. Architecture

Analizo architecture is presented in Figure 1, using a Legstyle [Clements et al. 2002].
Each layer in the diagram uses only the services providetdlalers directly below it.

Tools

Extractor | | Metrics || Output

Core

Figure 1. Analizo architecture, using the Layered Style [Clements et al. 2002]

The Core layer contains the data structures used to store informabacerning
the source code being analyzed, such as the list of existoduheg, elements inside
each module (attributes/variables, or methods/funcjjatependency information (call,

2we used the “module” concept as a general term for the diffagges of structures used in software
development, as classes and C source files

inheritance, etc). This layer implements most of Analizeibass logic, and it does not
depend on any other layer.

The Extractors layer comprises the different source code informationagtion
strategies built in Analizo. Extractors get informatioarfr source code and store them in
theCore layer data structures. It requires only the creation of a sigvelass to add a new
type of extractor that interfaces with another external tvgprovides its own analysis
directly. Currently, there are two extractors. Both areifaces for external source code
parsing tools:

e Analizo::Extractors::Doxyparseis an interface for Doxyparse, a source code parser
for C, C++ and Java developed by our group [Costa 2009]. Davsgpis based
on Doxyger, a multi-language source code documentation system timddios
a robust parser.
¢ Analizo::Extractors:: Soccount is an interface for David A. Wheeler's Sloccofint
a tool that calculates the number of effective lines of code.

The other intermediate layers avietricsandOutput. TheMetricslayer processes
Core data structures in order to calculate metrics. At the moménalizo supports a
fair set of metrics (listed in Section 4). TH@utput layer is responsible for handling
different file formats. Currently, the only output formatptemented is the DOT format
for dependency graphs, but adding new formats is simply éemat adding new output
handler classes.

TheTools layer comprises a set of command-line tools that constAngdizo in-
terface for both users and higher-level applications. €hesls use services provided by
the other layers: they instantiate the core data structoressor more extractors, option-
ally the metrics processors, an output format module, aobestrate them in order to
provide the desired result. Most of the features describ&ection 4 are implemented as
Analizo tools.

Those tools are designed to adhere to the UNIX philosophgy #tccomplish
specialized tasks and generate output that is suitablefamlaes input to other tools, either
from Analizo itself or other external tools. Some of the tafle implemented on top
of others instead of explicitly manipulating Analizo imeis, and some are designed to
provide output for external applications such as graph ohguprograms or data analysis
and visualization applications.

4. Features

4.1. Multi-language source code analysis

Currently, Analizo supports source analysis of code wriiteC, C++ and Java. However,
it can be extended to support other languages since it usegBise, which is based on
Doxygen and thus also supports several different languages

4.2. Metrics

Analizo reports both project-level metrics, which are oéted for the entire project,
and module-level metrics, which are calculated indiviQuédr each module. On the

3doxygen. or g/
4dwheel er. com sl occount/

project-level, Analizo also provides basic descriptivatistics for each of the module-
level metrics: sum, mean, median, mode, standard devjatemance, skewness and
kurtosis of the distribution, minimum, and maximum valuéheTfollowing metrics are
supported at the time of writiRg

e Project-level metrics: Total Coupling Factor, Total LirifsCode, Total number
of methods per abstract class, Total Number of ModulességsTotal number
of modules/classes with at least one defined attributesl Tmtmber of mod-
ules/classes with at least one defined method, Total Nunithdethods.

e Module-level metrics: Afferent Connections per Class,iage Cyclomatic Com-
plexity per Method, Average Method LOC, Average Number ofafaeters per
Method, Coupling Between Objects, Depth of InheritanceeTkack of Cohesion
of Methods, Lines of Code, Max Method LOC, Number of AttriesitNumber of
Children, Number of Methods, Number of Public Attributesjriber of Public
Methods, Response For a Class.

4.3. Metrics batch processing

In most quantitative studies on Software Engineering ¥iwvg the acquisition of source
code metrics on a large number of projects, processing eagacp individually is im-
practical, error-prone and difficult to repeat. Analizo gaocess multiple projects in
batch and produce one comma-separated values (CSV) nddtec$ile for each project,
as well as a summary CSV data file with project-level metracsafl projects. These data
files can be easily imported in statistical tools or in spskaet software for further anal-
ysis. This can also be used to analyze several releases sathe project, in software
evolution studies.

4.4. Metrics history

Sometimes researchers need to process the history of sefpaajects on a more fine-
grained scale. Analizo can process a version control regggsand provide a CSV data
file with the metrics values for each revision in which soutode was changed in the
project. Git and Subversion repositories are supporteectly; and CVS repositories
must be converted into Git ones beforehand.

4.5. Dependency Graph output

Analizo can output module dependency information extcaétem a source code tree
in a format suitable for processing with the Graplwgzaph drawing tools. Figure 2(a)
presents a sample dependency graph obtained by feedingeragiot tool with Analizo
graph output.

4.6. Evolution matrix

Another useful Analizo feature is generating evolutionnmcas [Lanza 2001]. After pro-
cessing each release of the project (see Section 4.3),¢hearsrequest the creation of an
evolution matrix from the individual data files. Figure 2@hows an excerpt of a sample
evolution matrix produced by Analizo.

SReferences to literature on each metric were omitted begafuspace constraints.
bgr aphvi z. or g/

Module 0.0.20.0.30.0.40.0.50.0.60.0.70.0.8

thumbnail bar.c

main_window |:| |:| |:|

thumbnailviewer [| 0O 0O O O O O

main [] |:| |:| |:| a a u
picture_viewer O |:| |:| D |:| |:| |:|

navigator O s I O

navigator.c

(a) Sample module dependency graph (b) Sample evolution matrix

Figure 2. Examples of Analizo features.

5. Usage in research work
Analizo has been extensively used by our group to suppagtirek projects:

e [Amaral 2009] used Analizo module dependency graph outpptaduce an evo-
lution matrix for a case study on the evolution of the VLC pxj Later on, an
evolution matrix tool was incorporated in Analizo itself.

e [Costa 2009] did a comparison between different strategiresxtracting module
dependency information from source code, leading to theldpment of Doxy-
parse — the Analizo Doxygen-based extractor.

e [Terceiro and Chavez 2009] used the metrics output on aroepry study on
the evolution of structural complexity in a free softwarejpct written in C.

¢ [Morais et al. 2009] used the Analizo metrics tool as a badkien Kalibro’, a
software metrics evaluation tool. Later on, Kalibro Webv&s® was developed,
providing an integration with Spago4Q a free platform to measure, analyze and
monitor quality of products, processes and services.

e [Terceiro et al. 2010] used the metrics history processegjure to analyze the
complete history of changes in 7 web server projects of nargizes.

e [Meirelles et al. 2010] used Analizo metrics batch featurgitocess the source
code of more than 6000 free software projects from the Séange net repository.

Most of the work cited above contributed to improvements irakzo, making it
even more appropriate for research involving source codbsis.

6. Final remarks

This paper presented Analizo, a toolkit for source codeyaigland visualization that
currently supports C, C++ and Java. Analizo has useful feattor both researchers
working with source code analysis and professionals what waanalyze their source
code in order to identify potential problems or possibleardements.

’sof twar el i vre. or g/ mezur o/ kal i br o/
8ccsl . ime. usp. br/kalibro-service
9spago4q. or g

Future work includes the development of a web-based phatfor source code
analysis and visualization based on Analizo. This projgcurrent under development.

Analizo is free software, licensed under the GNU GeneralliPulicense ver-
sion 3. Its source code, as well as pre-made binary packagasyals and tutorials
can be obtained frommof t war el i vre. or g/ mezur o/ anal i zo. All tools are self-
documented and provide an accompanying UNIX manual pagalizens mostly written
in Perl, with some of its tools written in Ruby and Shell Strip

This work is supported by CNPQ, FAPESB, the National Ingitnf Science and
Technology for Software Engineering (INES), Qualipso pobj and USP FLOSS Com-
petence Center (CCSL-USP).

References

Amaral, V. (2009). Analise de evolucao de projetos de safiwivre através de matrizes de
evolucao. Undergraduation course conclusion projectyésasidade Federal da Bahia.

Clements, P., Bachmann, F., Bass, L., Garlan, D., lverkittle, R., Nord, R., and Stafford, J.
(2002).Documenting Software Architecture : Viewsand Beyond. The SEI series in software
engineering. Addison-Wesley, Boston.

Costa, J. (2009). Extracao de informacdes de depeiaentre modulos de programas c/c++.
Undergraduation course conclusion project, Universidaai®lica do Salvador.

Hassan, A. E., Jiang, Z. M., and Holt, R. C. (2005). Sourcsuw®object code extraction
for recovering software architecture. Rroceedings of the 12th Working Conference on
Reverse Engineering (WCRE’ 05).

Lanza, M. (2001). The evolution matrix: recovering softev@volution using software vi-
sualization techniques. IWWPSE '01: Proceedings of the 4th International Workshop on
Principles of Software Evolution, pages 37-42, New York, NY, USA. ACM.

Littlefair, T. (2010). CCCC - C and C++ Code Counter. Avai@alathttp://cccc.
sour cef or ge. net /. Last access on June 3rd, 2010.

Meirelles, P., Jr., C. S., Miranda, J., Kon, F., Terceiro, @&d Chavez, C. (2010). A Study
of the Relationship between Source Code Metrics and Aiemess in Free Software
Projects.Submitted.

Morais, C., Meirelles, P., and Kon, F. (2009). Kalibro: Unaaramenta de configuragao
e interpretacdo de métricas de codigo-fonte. Unddrgrion course conclusion project,
Universidade de Sao Paulo.

Steffen, J., Hans-Bernhard, and Horman, B. N. (2008ope. http://cscope.sourceforge.net/.

Terceiro, A. and Chavez, C. (2009). Structural ComplexiwolHtion in Free Software
Projects: A Case Study. In Ali Babar, M., Lundell, B., and T Linden, F., editors,
QACOS-OSSPL 2009: Proceedings of the Joint Workshop on Quality and Architectural
Concernsin Open Source Software (QACOS) and Open Source Software and Product Lines
(OSSPL).

Terceiro, A., Rios, L. R., and Chavez, C. (2010). An Empirady on the Structural Com-
plexity introduced by Core and Peripheral Developers ireBeftware projectsSubmitted.

